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Impacts of vector-borne diseases (VBD)
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Climate change impacts on VBDs

VBDs are climate sensitive

Diseases transmitted by blood sucking arthropods
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Lafferty KD and Mordecai EA 2016 - F1000Research 2016, 5:2040

Modelling the impact of climate variability on VBD burden, development of
early warning systems (seasonal to climate change time scales).
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https://f1000research.com/articles/5-2040

Temperature effect on vector biting rates (a(T))

Scott et al., 2000, J Med Entomol 37(1):89-101

Biting rates:

Number of mosquito bites per
day per host.

When temperature increases,
biting rate increases.

Left:

Biting rates of Ae. aegypti, the
yellow fever mosquito; it can
transmit dengue, Zika & yellow
fever viruses.
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Fig. 5. Relationship between temperature and blood-

feeding frequency of female Ae. aegypti collected weekly in

Thailand (1990-1992) and Puerto Rico (1991-1993). Linear

regression lines and equations for each site are included.
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https://academic.oup.com/jme/article-abstract/37/1/89/858778?redirectedFrom=fulltext

Temperature effect on vector dvpt & mortality (u(T))

Brady et al., 2013, Parasite and Vectors 6:351
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Figure 4 The distribution of adult female Aedes aegypti and Aedes albopictus survival across a range of temperatures under laboratory
conditions (A and B) and field conditions (C and D). Colours from red to yellow show survival from 100% - 1% of the population remaining.
Grey indicates <1% of the population remaining. Dotted blue lines show the limits for 50% and 95% of the original population remaining.

Ae. aegypti, the yellow fever mosquito

Ae. albopictus, the Asian tiger mosquito

Eggs can overwinter
&/or resist desiccation.

Water is needed for
breeding sites.

Significant differences
between the lab and
the field!
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https://parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-6-351

Temperatures effect on Extrinsic Incubation Period (EIP(T))

Shapiro et al., 2017, Plos Biology 15(10)
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The Extrinsic Incubation Period (EIP) - example for P. falciparum and An. gambiae: time
required for the pathogen to develop inside the mosquito vector before it becomes infectious
(when the pathogen is detected in their salivary glands).

When temperature increases, the EIP decreases e.qg. it shortens.

If the temperature is too low, mosquito dies before the pathogen can replicate in their body e.g.
before becoming infectious (about 30days life span in the field).
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https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2003489

Methods to model the impact of climate on VBDs

Statistical models

Mechanistic models
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(B) Predictors
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Stat models: Maxent, BRTs, Bayesian models, Mahalanobis distance...

Tjaden et al. (2018). Trends in Parasitology 34(3): 227-245. http://dx.doi.org/10.1016/}.pt.2017.11.006

Mechanistic models: SEIR/SIR, Ro, Fuzzy logic, climate envelope...
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http://dx.doi.org/10.1016/j.pt.2017.11.006

Research example: the Asian tiger mosquito,
Ae. albopictus
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The Asian tiger mosquito: Aedes albopictus

Source: CSIR \

Main introduction routes

Figure 2. Main Aedes albopictus inroduction routes: (A) Used tyres. (B),(C) Lucky Bamboo (Dracaena spp.).

Scholte & Schaffner, 2007

Rapid spread worldwide
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blue: original distribution, cyan: areas where introduced in the
last 30 years.

Rapid spread in Europe & France
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Figure 3. Presence of Aedes albopictus in Europe per province for the years 1997-2007. Data to complete this
figure were kindly made available by Roberto Romi (Italy), Roger Eritja and David Roiz (Spain), Eleonora Flacio
(Switzerland), Charles Jeannin (France), Anna Klobucar (Croatia), Zoran Lukac (Bosnia and Herzegovina), Igor
Pajovic and Dusan Petri¢ (Serbia and Montenegro), Bjoern Pluskota (Germany), Anna Samanidou-Voyadjoglou
(Greece). The map was made by Patrizia Scarpulla. The 2007 outbreak of Chikungunya virus in Italy is indicated

with an arrow in the 2007 box. SChOlte & SChaffnel’, 2007



Aedes albopictus — distribution June 2011

Aedes albopictus
Current known distribution: June 2011
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Regions suitable for Ae. albopictus — U. Liv & PHE work

Climate obs (EOBS) 1960-1989
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Future risk increase: Benelux, Balkans, western Germany, the southern UK
Future risk decrease: Spain and Mediterranean islands

Climate obs (EOBS) 1990-2009

Main findings:

1) Climate already suitable over a
large area for its establishment in
1960-1989

2) Climatic suitability increased over
the past 20 years over central-
northern Europe and the Balkans

3) Similar trend for the future (risk
increases in the North and decreases
over southern Europe)

Caminade et al., 2012, JRSI



https://doi.org/10.1098/rsif.2012.0138

HPRU kick off meeting, Liverpool Nov 2014

Model 1 - 1999-2013

Model 1: Overwintering criterion + Annual
Temperature and rainfall thresholds
(Kobayashi et al., 2002)
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Risk for the UK - 2019

Recent climatic suitability 2006-16
(b) : &

Recent context:

w | Thames estuary & Kent at risk

l Future scenarios:

Climatic suitability to increase over
| southern UK

ruture climatic suitability 2060-69
RCP4.5 ,<i;, 4 (ii)y g 4

1000
100
10

1

0.1
0.01
0.001

1000 22K

1000
100
10

1

0.1
0.01
0.001

i Oo(

I ) o . ;
P L "
4 g =l ,
et ~ b 5 2 S o 2
: = | v . g : _ .~ .

Colder -> warmer climate models

W UNIVERSITY OF

Metelmann et al., 2019, JRSI CIEH conference, 4 Nov 2020 g LIVERPOOL



https://doi.org/10.1098/rsif.2018.0761

Aedes albopictus — distribution May 2020
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Recent news...

LSHTM — Public Health England Oct 2016 ECDC - October 2019
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- RAPID RISK ASSESSMENT

Asian Tiger mosquito
eggS fOUI'Id in Kent - 16 October 2019
expert comment

Wednesday, 19 October 2016 FO= B

) _ o Summary
A small number of eggs of the Aedes albopictus (or Asian Tiger) mosquito, which is capable of ) ) ) ) .
On 1 October 2019, a case of locally acquired Zika virus (ZIKV) disease in France (Hyéres city, Var department) was

transmitting diseases including dengue, chikungunya and Zika have been found in the UK for laboratory confirmed. The case had symptoms compatible with ZIKV disease during the first half of August 2019.

th ‘f' 1 ti The case did not report any history of travel to countries with historical ZIKV transmission. No evidence of sexual
€ Tirst time. transmission was retrieved during the investigation. No imported ZIKV disease cases were reported in the area in
2019. Further epidemiclogical investigations are ongoing to define the most probable mode of transmission. At this
- & i stage, vector-borne ZIKV transmission is the hypothesis that forms the basis for this ECDC risk assessment. IF this
!n recent years, the.re have been a number of exotic I'T‘IOSQIJI.T.OSS that h.ave t?scome es_tabllsrled y e e e e i e e R o Tt D . rborne transmission
in Europe and Public Health England (PHE) conducts surveillance for invasive mosquitoes in of ZIKV in Europe.
the UK. It was through this routine surveillance that PHE confirmed eggs from Aedes Vector control measures are being implemented near the residence of the case. To date, investigations have not

managed to identify additional cases, but further cases may be detected through ongoing active case finding.

Ae. albopictus is widely established in southern Europe (see de. albopictus, current known distribution, August

2019) and a competent vector for ZIKV. However, it is considered a less competent vector than the tropical and

subtropical vector Ae. aegypti. The occurrence of sporadic cases or clusters of locally acquired vector-borne ZIKV

. . cases is possible, notably in the Mediterranean region of Europe when environmental conditions during summer and
early autumn can support vector abundance and arbovirus replication at a level that is sufficient for autochthonous

N Ot eStab I IS h ed yet I n th e U K . transmission of ZIKV. The report of a locally acquired ZIKV disease case in the southern part of France is thus not

unexpected.

1 To date, and based on ECDC's epidemiological assessment, the probability of ongoing vector-bome local

o e Co n I n u e CRCE) transmission in Hyéres (and surrounding areas) is considered very low because current evidence does not indicate
the existence of a more extensive cluster of ZIKV cases. As temperatures are progressively decreasing during
autumn, the environmental conditions are currently not favourable for sustained transmission. The current risk
posed to the population, including pregnant women and their unborn children, is very low. If autochthonous,
vector-borne cases could be documented, for example by detecting additional locally acquired cases in the
immediate vicinity of the case, the risk for pregnant women and unborn children would be low instead of very low.
It is possible that the ongoing investigation will retrospectively identify locally acquired cases because Ade. albopictus

albopictus in one trap in Kent.

UNIVERSITY OF

LIVERPOOL

)

CIEH conference, 4 Nov 2020 w



Other research examples
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Xylella fastidiosa (Xf)

Article | Open Access ‘ Published: 20 June 2019 '7 R S
. qe . . oy \& 0d and Agriaiture @Inﬁﬂmmﬂ Plant Protection Convention
Xylella fastidiosa: climate suitability of European Qﬁ Ovymization of the Proteatg he words lant rescses fom pests

United Nations

continent
Martin Godefroid, Astrid Cruaud, Jean-Claude Streito, Jean-Yves Rasplus & Jean-Pierre Rossi &2 FaCI ng the th reat Of XV/@/Ia fast,dlosa

Scientific Reports 9, Article number: 8844 (2019) | Cite this article tO get h e r
3454 Accesses | 7 Citations | 6 Altmetric | Metrics

A Xylella fastidiosa fastidiosa
The bacterium Xylela fastidiosa is AbOUt the vectors

aserious threat to agriculture, the

ervironment and the economy. Any xylem sap feeding insect is a potential vector of
Its geographical distribution and its Xylella fastidiosa. The sharpshooters Homalodisca
hostrange have greatly expanded in  vitripennis and Acrogonia terminalis are primary

70

Okm_250km 500km
C—

60 o | recent years. vectors in California and Brazil, respectively. The
1.00 Coordinated efforts should dow spittlebug Phil spumarius is the only
l be made globally to avoid further known vector in ftaly and is widely distributed in
kEE spread. Europe and in the Mediterranean region. However, with

ongoing research, new vectors may be identified as the
bacterium expands its geographical range.
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Asian Hornet

i ; Biological Conservation
PR Volume 157, January 2013, Pages 4-10

Climate change increases the risk of invasion by
the Yellow-legged hornet

Morgane Barbet-Massin * &, Quentin Rome S &, Franck Muller “, Adrien Perrard €, Claire Villemant *&,
Frédéric Jiguet* & =

(a) Predicted current climatic suitability
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Chris Looney fills a tree cavity with carbon dioxide after

vacuuming a nest of Asian giant hornets from inside it, on : !
24 October in Blaine, Washington. =
. ; W o7
Photograph: Elaine Thompson/AFP/Getty Images =
Source: Guardian =
https://www.theguardian.com/environment/2020/oct/31/us-murder- m os
hornets-nest-asian-giant E
8 o025
. . . (]
This bee-hawking hornet already invaded .

range in Europe, in Spain and in Central
and Eastern Europe — from Switzerland to
Hungary up to Southern Sweden.
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Conclusions

Climate change, coupled with globalization, impacts insects vector borne diseases distribution
(breeding sites — development and survival of vectors, pathogen development rate inside the
vector e.g. EIP...)

Increasing evidences that climate change already played a role in the background over the
past 20 years: worrying vector trends have been observed in different temperate, arctic and
highland regions. Sporadic outbreaks of vector-borne diseases have been observed in
temperate climes (Southern Europe, southern USA, China...)

Many factors to consider to anticipate the real future of infectious diseases (socio-economic,
demography, land use changes, drug and insecticide resistance, technological break through,
human behavior, interaction with animals...) -> One Health

Need to use different disease modelling approaches and ensemble of climate models,
emission & population scenarios to assess uncertainties, and these can be quite large!

Model validation is critical but difficult - validation relies on the quality of health and climate
data!

Climate change is already affecting our health directly (climatic extremes: heat waves, floods,
air pollution...) and will have significant indirect effects from macro to micro scale e.g. on
freshwater and oceanic resources, agriculture, livelihoods, population migration... It only
started e.g. aperitif time...

KAd UNIVERSITY OF

CIEH conference, 4 Nov 2020 % LIVERPOOL



